Genomic organization of Trypanosoma brucei kinetoplast DNA minicircles.
نویسندگان
چکیده
The sequences of seven new Trypanosoma brucei kinetoplast DNA minicircles were obtained. A detailed comparative analysis of these sequences and those of the 18 complete kDNA minicircle sequences from T. brucei available in the database was performed. These 25 different minicircles contain 86 putative gRNA genes. The number of gRNA genes per minicircle varies from 2 to 5. In most cases, the genes are located between short imperfect inverted repeats, but in several minicircles there are inverted repeat cassettes that did not contain identifiable gRNA genes. Five minicircles contain single gRNA genes not surrounded by identifiable repeats. Two pairs of closely related minicircles may have recently evolved from common ancestors: KTMH1 and KTMH3 contained the same gRNA genes in the same order, whereas KTCSGRA and KTCSGRB contained two gRNA genes in the same order and one gRNA gene specific to each. All minicircles could be classified into two classes on the basis of a short substitution within the highly conserved region, but the minicircles in these two classes did not appear to differ in terms of gRNA content or gene organization. A number of redundant gRNAs containing identical editing information but different sequences were present. The alignments of the predicted gRNAs with the edited mRNA sequences varied from a perfect alignment without gaps to alignments with multiple mismatches. Multiple gRNAs overlapped with upstream gRNAs, but in no case was a complete set of overlapping gRNAs covering an entire editing domain obtained. We estimate that a minimum set of approximately 65 additional gRNAs would be required for complete overlapping sets. This analysis should provide a basis for detailed studies of the evolution and role in RNA editing of kDNA minicircles in this species.
منابع مشابه
A new function of Trypanosoma brucei mitochondrial topoisomerase II is to maintain kinetoplast DNA network topology.
The mitochondrial genome of Trypanosoma brucei, called kinetoplast DNA, is a network of topologically interlocked DNA rings including several thousand minicircles and a few dozen maxicircles. Kinetoplast DNA synthesis involves release of minicircles from the network, replication of the free minicircles and reattachment of the progeny. Here we report a new function of the mitochondrial topoisome...
متن کاملThe rotational dynamics of kinetoplast DNA replication.
Kinetoplast DNA (kDNA), from trypanosomatid mitochondria, is a network containing several thousand catenated minicircles that is condensed into a disk-shaped structure in vivo. kDNA synthesis involves release of individual minicircles from the network, replication of the free minicircles and reattachment of progeny at two sites on the network periphery approximately 180 degrees apart. In Crithi...
متن کاملKinetoplast DNA replication: mechanistic differences between Trypanosoma brucei and Crithidia fasciculata
Kinetoplast DNA, the mitochondrial DNA of trypanosomatid parasites, is a network containing several thousand minicircles and a few dozen maxicircles. We compared kinetoplast DNA replication in Trypanosoma brucei and Crithidia fasciculata using fluorescence in situ hybridization and electron microscopy of isolated networks. One difference is in the location of maxicircles in situ. In C. fascicul...
متن کاملRole of p38 in replication of Trypanosoma brucei kinetoplast DNA.
Trypanosomes have an unusual mitochondrial genome, called kinetoplast DNA, that is a giant network containing thousands of interlocked minicircles. During kinetoplast DNA synthesis, minicircles are released from the network for replication as theta-structures, and then the free minicircle progeny reattach to the network. We report that a mitochondrial protein, which we term p38, functions in ki...
متن کاملA second mitochondrial DNA primase is essential for cell growth and kinetoplast minicircle DNA replication in Trypanosoma brucei.
The mitochondrial DNA of trypanosomes contains two types of circular DNAs, minicircles and maxicircles. Both minicircles and maxicircles replicate from specific replication origins by unidirectional theta-type intermediates. Initiation of the minicircle leading strand and also that of at least the first Okazaki fragment involve RNA priming. The Trypanosoma brucei genome encodes two mitochondria...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Protist
دوره 154 2 شماره
صفحات -
تاریخ انتشار 2003